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We investigate a class of bounded random-cascade models which are multiplicative by construction
yet additive with respect to some but not all of their properties. We assume the multiplicative weights
go to unity as the cascade proceeds; then the resulting field has upper and lower bounds. Two largely
complementary multifractal statistical methods of analysis are used, singular measures and structure
functions yielding, respectively, the exponent hierarchies D, and H,. We study in more detail a specific
subclass of one-dimensional models with weights 1+(1—2p)r’_, at relative scale r, =2~ " after n cascade
steps. The parameter H >0 regulates the degree of nonstationarity; at H =0, stationarity prevails and
singular “p-model” cascades [Meneveau and Sreenivasan, Phys. Rev. Lett. 59, 1424 (1987)] are retrieved.
Our model has at once large-scale stationarity and small scale nonstationarity with stationary incre-
ments. Due to the boundedness, the D, all converge to unity with increasing #; the rate of convergence
is estimated and the results are discussed in terms of “residual” multifractality (a spurious singularity
spectrum due to finite-size effects). The structure-function exponents are more interesting:
H,=min{H,1/q]} in the limit n— 0. We further focus on the cases ¢ =1, related to the fractal struc-
ture of the graph, ¢ =2, related to the energy spectrum, and ¢ =1/H, the critical order beyond which
our multiplicative (and multiscaling) bounded cascade model can be statistically distinguished from frac-
tional Brownian motion, the corresponding additive (and monoscaling) model. This bifurcation in sta-
tistical behavior can be interpreted as a first-order phase transition traceable to the boundedness, itself
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inherited from the large-scale stationarity. Some geophysical applications are briefly discussed.

PACS number(s): 02.50.—r, 05.40.+j

I. INTRODUCTION
A. Turbulent cascades as stationary scale-invariant processes

Multiplicative cascade models have enjoyed a growing
popularity over the past decade, ever since the introduc-
tion of multifractal formalism [1-4]. Many different
data-analysis techniques based on multifractal concepts
have been developed and the range of problems to which
they (as well as cascade models) have been successfully
applied spans laboratory, geophysical and astrophysical
systems. Multifractal formalism has become a virtually
indispensable tool in computational physics where appli-
cations include percolating systems, growth phenomena
(such as diffusion-limited aggregation) and deterministic
chaos. The common feature in all of the above situations
is the strongly nonlinear dynamics and the large range of
spatiotemporal scales. It is no accident that the earliest
and still one of the main sources of motivation for intro-
ducing new cascade models is the characterization of in-
homogeneity (“intermittency”) in turbulence at the dissi-
pation scale and its effect (“‘corrections”) on the inertial
range quantities and associated exponents. This fruitful
interaction was initiated prior to the development of the
general formalism, in the pioneering studies following
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Kolmogorov’s “refined” similarity hypothesis [5-9], was
actively pursued while the multifractal formalism was be-
ing elaborated [10-13], and continues to stimulate new
ideas [14,15].

An important property of all currently available tur-
bulent cascade models is “stationarity,” an expression we
borrow from time-series analysis meaning “(statistical) in-
variance under translation.” We will extend this
definition to the spatial domain as well and will do
without the mathematically correct but potentially
confusing expression of “(statistical) homogeneity.” Sta-
tionarity is generally viewed as desirable property a
priori, on theoretical grounds. Let ¢(x), 0=<x <L, desig-
nate a generic random process with a finite one-
dimensional support and let { ) denote ensemble or ¢
averaging. The common assumption that {@(x)) =0 has
no bearing on stationarity. Brownian motion is the clas-
sic case of nonstationarity; if starting at @(0)=0, it will
verify this assumption but also yields {@(x)*)~x.
Switching from one- to two-point statistics, an autocorre-
lation function

G(r;x)=(@(x)p(x+r)), 0<x<L—r (05r=<L),
(1

independent of x,G(r;x)=G(r), is already a good indi-
cation of stationarity. If ¢(x) is furthermore scale invari-
ant over all possible scales, 0 <7 <L, then

G(r)~(r/L)™#*, O<u<1. (2)
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The Wiener-Khintchine theorem states that the energy
spectrum E(k),1/L <k < w0, is in Fourier duality with
G(r). In the scaling case (2), we have

E(k)~(kL)™#, 0<B=1—pu<1. (3)

Notice that the exponents u and 3 have the same natural
range: correlation will generally decrease with increasing
separation (u>0, B<1) but a too rapid decay (u=1) is
basically equivalent to a § correlation, B—0 (u— 1) leads
to G (r)—&(r) (i.e., u becomes irrelevant).

From another vantage point, stationarity is an undesir-
able constraint since many natural signals, in fact, exhibit
both scaling and nonstationary behaviors, i.e., they
empirically yield S> 1. Prime examples come again from
turbulence: velocity [16] and passive scalar [17,18] fluc-
tuations have B=3 and many other geophysical signals
are also in this category. To mention only those of im-
mediate interest to the authors, we have (cloud) liquid
water content [19-21] and the Earth’s radiation fields
[22]. A prototypical scale-invariant nonstationary pro-
cess is provided by any coordinate of a particle in
Brownian motion and the focus has been mainly on its
geometrical or “self-affine” properties. Further examples
of statistical self-affinity are Mandelbrot’s [23] fractional
Brownian motions (FBM’s). However, these simple scal-
ing models lack intermittency, even in their (stationary)
gradient fields; ‘“‘activity’” is diluted in all of space, not
concentrated onto sparse fractal subsets as in cascade
models. Also these models are ‘““too nonstationary,” in
the following sense: given an infinite domain of
definition, they can wander off to :c whereas many
fields related to natural phenomena are physically bound-
ed. It is possible to have the best of both worlds of scal-
ing behavior, nonstationarity and intermittency? Not
straightforwardly, to say the least, since the former attri-
bute calls for additive models (hence simple scaling) while
the latter calls for multiplicative models (hence multiple
scaling).

B. From intermittent random measures and stationarity
to random multiaffine functions and nonstationarity

An increasing number of researchers are looking at
this problem. Parisi and Frisch’s original description of
multifractality [3], based on local Holderian properties, is
a rich but somewhat abstract conceptualization. In par-
ticular, they do not describe in any concrete way how to
build a multifractal. Schertzer and Lovejoy [11] suggest-
ed a simple power-law filtering (fractional integration) of
singular cascade models as a means to stochastically
simulate fields reminiscent of passive scalars in tur-
bulence. In the same spirit but instead of smoothing the
completed cascade in Fourier space, one can simply act
on the multiplicative weights during the cascade in physi-
cal space [24]; this is the approach we explore in more de-
tail in the following. The midpoint displacement tech-
nique for building FBM’s were generalized in Refs.
[25-27] to obtain random or deterministic functions with
multiple Holderian singularities. The same goal was
achieved by combining (fractional or ordinary) integra-
tion with signed measures obtained by recursive cascade-
like procedures in Refs. [28-30].

Clearly, we are dealing with a vast and important new
class of stochastic models that have been accurately de-
scribed as “multiaffine” [26,27]. In contrast with (stan-
dard, unbounded) cascade processes which only exist,
mathematically speaking, in the sense of measures (i.e.,
via integrals), multiaffine processes are simply random
functions, as are their “monoaffine’’ counterparts (name-
ly, FBM’s). Accordingly, different statistical tools are
needed to characterize the two above types of multifrac-
tals. On the one hand, standard singularity analysis tech-
niques (which we will refer to generically as ‘“‘singular
measures’”) apply to multiplicative cascades which are
stationary. On the other hand, structure functions apply
to multiaffine processes which are necessarily nonstation-
ary. In fact, we will argue that the structure function ex-
ponents give us a way of quantifying and qualifying “non-
stationarity,” a presently rather fuzzy notion, in much
the same way as standard singularity analysis makes pre-
cise the concept of “intermittency,” a previously fuzzy
attribute of variability.

C. Overview and scope of this paper

In the upcoming section, we survey the theory of mul-
tiplicative cascades and introduce the general idea (and
some specific ways) of smoothing the singularities as they
develop, by reducing at each cascade step the dispersion
of the multiplicative weights. We stress the fact that
such models have both stationary and nonstationary
features, scaling regimes in particular. In Sec. III,
bounded models are studied from the standpoint of singu-
lar measures and we find that the generalized dimensions
converge towards triviality (D, =1) as the cascade devel-
ops. In other words, we find a dramatic but not total col-
lapse of the singularity spectrum since, at finite resolu-
tion, there is a finite “residual” D, spectrum of interest in
its own right. In particular, the finding of such spurioas
intermittency exponents rises important questions about
how to interpret the results of singularity analysis when
applied to intrinsically bounded atmospheric fields, e.g.,
reflected solar flux or liquid water density in clouds.

In Sec. IV, we turn to structure functions and find the
associated exponents {(g) to exhibit definite multiscaling
in the bounded case. As might be expected from their
stationarity, we find trivial structure functions [{(q)=0]
for standard cascades. Cases of special interest are dis-
cussed in more detail: at g=1 we find the model to be
stochastically continuous and at ¢ =2 we find S values in
excess of unity, as required (except in the singular limit of
the model). We systematically compare the new models
with FBM’s, the latter being nonstationary on all scales
whereas the former are only asymptotically (small-scale)
nonstationary. This apparently subtle difference induces
a multifractal phase transition of the first kind: the first
derivative of {(q) is discontinuous at a critical g related
to the new (smoothing) parameter. In Sec. V, we summa-
rize and discuss our findings using, in particular, the
‘g =1 multifractal plane” which is a simple device for
pinpointing the degrees of intermittency and of nonsta-
tionarity in any system or model.

Throughout the following, we will use exclusively
moment-based statistical approaches. In Ref. [31] we re-
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cast and discuss our main results in terms of local
Holderian singularity analysis in the manner of Parisi
and Frisch [3].

II. MULTIPLICATIVE CASCADE MODELS

A. Turbulent cascades in general, log-binomial p models
in particular

Consider a homogeneous distribution of some sub-
stance on the unit interval. Let ¢,(x,,) be the mth part
of the substance distribution after the nth step. First
(n =1) we divide the unit interval into A, equal parts of
length 1/A, (“subeddies”) where A, is an integer >1 and
then the non-negative random weights W;,j = » Ags
are applied [see Fig. 1(a) for an example w1th k0—3] In
the next step (n =2) each subinterval is further divided
into AO equal parts with corresponding weights
Wyi= ., Ay [Fig. 1(b)] and so on [see Figs. 1(c) and
1(d) where we use the more traditional [32] notation *
instead of “¢”]. On the nth step the distribution of the
original substance is

¢n(xkom—j+l ¢n-—l(x n] ’
4)
J=L.. 0k, m=1,...,A,_,,
starting with ¢4(x;)=1 and where
A, =A5, n=12,..., (5)
is the number of cells in the lattice and
r,=1/A, (6)

is the variable grid constant, in other words, the vanish-
ing inner or homogeneity scale.
It follows from (4) that

b(x,)= A, , n=12..., (D

n
Inw,, m=1,...

i=1

where j randomly takes one of its A, values as the cascade
proceeds. When n is large enough the above processes
can be highly intermittent and are generally referred to as
“multifractals,” emphasizing the multiplicative modula-
tion and the sparseness of the sets where the substance is
ultimately concentrated. This, however, calls for W,-j’s
that are identically distributed with respect to
i=1,2,...,n (or at least have comparable dispersions).
If the W); are log-normally distributed random num-
bers (exponentials of normal deviates with mean M and
standard deviation o), independently of i=1,2,.
(and j=1, , Ap), we obtain the cascade model ﬁrst pro-
posed in [5,6] as an attempt to account for intermittency
in fully developed three-dimensional (3D) turbulence. To
keep the model conservative on average ({ W)=1) one
requires M=—g%/2. The outcome for A,=3 and
0 =0.5 is illustrated in Figs. 1(a)-1(d) for n =1, 2, 4, and
6. Notice how, on the one hand, the number of cells is
multiplied by A, at each step and how, on the other hand,
the peaks grow in strength with no bounds in view; the
vertical scale (in the inset) gives a rough idea of this

growth.

For A,=2 we obtain another turbulent cascade model
known as a “p model” [13] by letting W;; be either 2p or
2(1—p), 0=<p=<1/2, with equal probability, and
W;,=2— W, (still independently of i =1,2,...,n). This
model is constrained to be microcanonically [8] con-
served (i.e., on a per eddy basis), less restrictive canonical
versions (the weights are independent from one subeddy
to the next, as in the log-normal model) have also been
proposed [10]. The p model can also be related to the
dynamical systems concept of a “two-scale Cantor set”
[4].

It follows from (7) that

logy ¢,(x, )—-—— 2 log, W;; - (8)
i=1

If the weights can only take one of two values, then after
n cascade steps there are n +1 different levels equally

(d) 1 step no. 1 (3'=3 points) »
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FIG. 1. Development of a canonical log-normal cascade

model e(x), 0=x < 1, with dividing ratio A;=3 and standard de-
viation 0y, =0.5, recalling that we take mean My,
=—0oky /2 to obtain (W)={e)=1. Cascade steps n=1, 2,
and 4 are found in the inset, illustrating the unbounded growth
of singularities of all orders (the arrows indicate the unit aver-
age). The sixth step is illustrated in more detail, with average
(€) and most probable values highlighted eyp as well as the
value €, that contributes most to the (unit) mean {¢€). The “in-
formation” codimension C;=~0.11 can be visualized with the
help of the level- or exceedence-set associated with €, (fractal di-
mension D, =1—C,).
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spaced between two extremes on a log scale as in (8);
moreover, these levels (or “orders of singularity”) are bi-
nomially distributed. We will therefore refer to the p
model as a “log-binomial” model, thus emphasizing the
essential difference with its log-normal counterpart, the
statistical properties of any multiplicative cascade model
being completely determined by the choice of weights,
equivalently, their logs (the “generators” [11]).

Cascades come with all degrees of intermittency be-
tween two extremes. If both multiplicative weights are
always equal (p =1 in the above) the field remains flat and
we can take this case of degenerate weights as representa-
tive of “weak” variability, fluctuations around some non-
vanishing mean value of small amplitude relative to this
mean. At the other extreme on the intermittent variabili-
ty scale we find the case where the smaller of the two pos-
sible weights is null (p =0 in the above). Instead of being
randomly “‘strengthened” or “weakened,” the subeddies
are made ‘“dead” or maintained ‘“‘alive.” Every time a
— oo is contributed to the sum (8), no number of subse-
quent positive contributions will balance it and all surviv-
ing eddies will be equally strong. One could legitimately
talk about “log-monomial” models but these are general-
ly referred to as “B models” [9] or “monofractals™ [11].
In this case, the (microcanonical) log-binomial model
reduces to a single Dirac § function centered at random
in the unit interval, an extreme case of intermittency by
any standard.

There are degrees of intermittency and kinds of inter-
mittency. The problem of intermittency in turbulence
has motivated singular cascade models with many
different flavors: log-normal [5,6], log-binomial (i.e., a
models [10] or p models [13]), log-Levy [11], log-
monomial (8 models [9], also [7,8]), and even log-
degenerate (for constant fields). It all depends on the dis-
tribution of the multiplicative weights. The model to be
introduced shortly is a simple variant on the p model that
shifts the focus entirely from the issue of homogeneity vs
intermittent variability (and what kind) to that of sta-
tionarity vs nonstationarity.

It can be shown [32] that all multiplicative cascade
processes (with weights W independent of the cascade
step) have scaling autocorrelation functions with ex-
ponents p=logxo( W?) and energy spectra with ex-

ponents B=1—pu < 1. For instance, the spectral exponent
of the log-binomial model is B=1—log,[1+(1—2p)?]
and the log-normal one has f=1—¢?/InA,. This con-
straint of stationarity—and the related one on S-—
considerably limits the direct applicability of cascade
models since natural signals or fields very often have
B> 1, as mentioned in the Introduction. Scaling models
with nonstationary small-scale behavior (3> 1) are typi-
cally additive in nature (e.g., FBM’s). In the following,
we will describe a way of constructing such random fields
without leaving the general framework of multiplicative
cascades. This is appealing because, as is widely believed
to occur in turbulent flows, cascade processes will argu-
ably occur whenever nonlinearity dominates the dynam-
ics of the system. We will then investigate the multifrac-
tal properties of the new model.

B. Bounded cascade models

Consider microcanonical cascade models with A,=2,
i.e., where

W,=1%f, (0<f,<1,j=1,2). (9a)
If
£ 0, i, (9b)

then these models,
6, (x, ) =[] 1£f), m=1,...,A,, (10)
i=1

lose their log-binomial character and accept upper and
lower bounds (¢..):

0<d_=dx)=lim¢,(x)=¢d, <o, 0=x=1. (1
n--0

The following parametrization has been suggested in
somewhat different notations [24]

_ H
=UEIED <yt 0<HSw . (12)

27 :
Explicitly, we have f,=1—-2p, f,=f;_,/2",

i=2,3,...,n. Many other models with vanishing f; are
conceivable, e.g., the more general three-parameter ver-
sion of the above f; = (1—2p)2"i5/2H with s > 0.

At H =0 the bounded model reverts to a standard (un-
bounded, stationary) log-binomial one with its special ex-
treme cases described previously. The parameter H
clearly produces a radical smoothing that converts cas-
cades of the usual singular kind into more tame bounded
processes. The composite Fig. 2 dramatically illustrates
this point, using a sequence of “zooms” onto a cascade
model with H=! and p=0.35 (¢_=0.289"--,
é.=2.96---). Each of the graphs contains 2°=512
points. Figure 2(a) is a n =9 level bounded cascade. It is
then divided into 16 parts and one of them is horizontally
rescaled and details are added using four more cascade
steps locally [Fig. 2(b)]; this leads to -Lth of the same cas-
cade at n=13 levels. This procedure is repeated twice
more [Figs. 2(c) and 2(d)] up to n =21. One sees that the
increase of n essentially ‘“regularizes” the field. In
mathematical terminology, the resulting process is “sto-
chastically continuous.” Figures 2(b’')—2(d’) are vertically
rescaled versions of Figs. 2(b)-2(d). Clearly, these all
look similar and this illustrates a basic scaling property of
¢(x): its graph is statistically self-affine (see Sec. IV for
further details). The “smoothing” effect of H can also be
demonstrated by considering an extreme case. If we take
the limit H-—« we are left with one single jump at
x=0.5, all other cascade steps are ineffective. This spe-
cial case is therefore mapped to a Heaviside step, ran-
domly up or down. This is a prime example of nonsta-
tionarity and almost everywhere differentiability over and
above stochastic continuity (which is not inhibited by a
single discontinuity in every realization).

Strictly speaking, the above models are not scale in-
variant over the full range of available scales. One can
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define a characteristic scale r* dependent on H such that
r*H equals 1. Solving r*#=1 for a (not necessarily in-
teger valued) characteristic cascade “step” we find

n*=1/H . (13)

Up to this point, the ¢, values change considerably as n
is incremented; from then on, the f; can be considered
<<1 to first order and the ¢, values change much less.
Qualitatively speaking, the model behaves ‘“multiplica-
tively” for the largest scales (r R r*) implying a degree of
stationarity and discontinuity whereas, for the smallest
scales (r <<r*), the model’s behavior is dominated by the
smoothing. As we will see, continuity and ‘“additive”
features arise and stationarity can be found only in the in-
crements. We note however that, for finite values of H (a
typical value of interest is 1, n* is O (1) and for a finite
n>>n* there exists a large scaling regime where the ex-
ponents discussed in the following are defined either nu-
merically or analytically.

III. SINGULARITY ANALYSIS

A. Brief description
Define the generic stochastic process [43]

P(x)>0, 0<x<L . (14)

For simplicity, we have assumed that the dimension of
the ‘“support” (the L-sized interval where x takes its
values) is one. Define also the open segment,
B,=(—r/2,+r/2),0<r =L, and its indicator function

1, x€B,, 0<r=L
Iy )=, x&B,, 0<r<L .
Now, keeping r constant, consider the following convolu-

tion product of the random process @(x) and I B,(X)
which we denote by “Z¢@.” Then

2o(r;x)=[golp ](x)
= foLq)(x’)IBr(x —x")dx’

=" exax', r25xSL=r/2. (15)
x—r

Since we will be seeking power-law behavior, it is best to

normalize the random measures in (15), the natural
choice being

—__29rx) 5, 16
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which is not to be confused with the parameter p in the
cascade model (12).

We assume here that the stochastic process @(x) is sta-
tionary; for our present purposes, this means that statisti-
cal moments are independent of position, i.e.,
(p,(x)?)=(pg) for any real q. Of course in practice,
one will tend to (make “ergodicity” assumptions and)
substitute spatial or x averaging for its ensemble or ¢
counterpart. This can be for reasons of computational
cost (models) or because very few realizations are avail-
able, possibly only one (data). At any rate, the case g =1
is easily dealt with; using (15) and (16), we find

(p,)= % , (17a)
assuming from now on that p,(x)70 almost surely. For
q#1, we get
1+rq)

’
, r<<L

(pf)~ 3

(17b)

with 7(1)=0 due to (17a) and 7(0)= —1 due to normali-
zation. Actually, we consider only the moments of order
g for which (p?) < «. The conditions for divergence of
high-order moments are briefly discussed in Appendix A
but in the following we will not be concerned with this
complication since microcanonical conservation guaran-
tees convergence, even in the limit ¢ — o [33].

If the random field @(x) is quasihomogeneous (say, nar-
rowly bounded above and below, everywhere and on all
scales), then (p4)=~{p,)9=(r/L)? (for all r and ¢) and
(17b) yields 1+7(gq)=gq. In contrast, if 7(q)7q — 1 for all
g0, 1, then it is concave [7"'(q) <0] and we are dealing
with very skewed inhomogeneous fields: {p?) will gen-
erally be very different from {p,)? since even a small
difference in the exponents causes a large difference in
moments due to the smallness of r /L. On the one hand,
this leads to the idea of generalized or Renyi dimensions
(1,2]

D,= g) (18)
qg—1

which is =1 in weakly variable situations and nonin-
creasing generally speaking. On the other hand, the
Legendre transform of 7(q) yields the well-known singu-
larity spectrum f(a), conveying upon it a multifractal
meaning [4]: the leading contributions to {pJ) come
from ever sparser (more fractal) subsets of [0,L] as g in-
creases.

Since D, is generally smaller than D;=1, their
difference
C,=1—D,;=20 (19)

can be viewed as a straightforward measure of intermit-
tency (or sparseness) in the system, equality in (19) being
attained for weakly variable fields. The exponent D, is
known as the “information” dimension, making C, a
codimension. For a log-normal cascade one has
C,=0?/21InAy, the numerical values chosen for Fig. 1
leading to C;=0.1. Although C, is possibly the most
important exponent in this approach, another value of

particular interest to us is D,, the “correlation” dimen-
sion. It is directly related to the autocorrelation and en-
ergy spectrum exponents, at least for one-dimensional
cascade models [32]: p=1—7(2) hence B=7(2)=D,, cf.
Egs. (2) and (3), and since we know that D, <D, <D,=1,
stationarity (B < 1) is established.

B. Singularity properties of bounded cascade models

We now apply singularity analysis to the bounded
model (9) and (10), letting D;") denote the generalized di-
mensions of the nth level bounded cascade model. We
show in Appendix B that

. 1 1 &
Dy= g = 3 logo[(1+£,)9+(1=£,)]
q ni=
n=12"" (—w=<gZx).
(20a)
If f;=const=1—2p, i.e., letting H =0 in (12), we retrieve
the standard log-binomial result [13]
1

M=p =—
D\"=D,

log,[p?+(1—p)], 0=p<i.

(20b)

For g =2 the correlation dimension D, coincides with
the spectral exponent 8 quoted in Eq. (37b) for this singu-
lar one-dimensional model but, for the bounded case (11),
the connection between 8 and D, fails due to the lack of
(small scale) stationarity.
Taking the limits ¢ — * o in (20a) we find
D‘t"Z,C:l——’ll—zlogz(lif,-), n=1,,..., (21a)

i=1

which relate directly to the lower (— ) and upper
(+ o0 ) bounds of the model. These exponents can be
contrasted with the singular case (20b):

1<D__ =—logp <, 05p<i
(21b)
0<D,,=—log)(1—p)<1, 0=<p<i.

() —

Clearly we have D) =1 in (21a) as long as (9b) since
then

rll‘zfxé’oa h— o, (22)

i=1

and this is sufficient to obtain

(n) (0) — —
an —D, —Dq_l, n—oo . (23)
More precisely,
: 1 My pe
lim — 277dt < 0o, O<H=Zo0, 520, (24)

and this is sufficient to prove (22); the trade of conver-
gence in (23) is determined by the convergence of the in-
tegral (24).

For ¢ =1, we can apply the rule of I’'Hospital to Egs.
(20a) and (20b) and obtain the following measures of in-
termittency C" at each cascade level n:
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n
C‘,"’=1-D‘1"’=;1,;2[“+fi)l°g2(1+f")
i=1

+(1—flogy(1—£))),

fi—0, i>wo (252)
and
C{"=C,=1+plog,p +(1—pllog,(1—p) =0,
fi=1-2p. (@5b)

As mentioned earlier, the case p =H =0 corresponds to
randomly positioned & functions and C; =1 in this (most
intermittent) case. In the general bounded case (25a), we
of course have

C‘{"—)C]EO, n—oo ., (26)

Summarizing, the bounded (H >0) model is no longer
a multifractal in the restricted sense of singular measures
since these scale trivially in the limit of many cascade
steps (D,=1,— o <g= ), it is in the same class as
homogeneous fields (f;=0) in spite of its intrinsically
multiplicative character. In the singular limit H =0 the
model becomes unbounded and, being identical to a mi-
crocanonical log-binomial model, has a nontrivial singu-
larity spectrum. The most singular case, H =p =0,
yields & functions as a special type of fractal measure
(D, = for g <0, D, =1 for ¢ =0, and D, =0 for g >0).
However, we will soon see that the bounded model is
multifractal in the broad sense since it has multiscaling
structure functions (which, in fact, turn out to be trivial
in the unbounded case). We will relate this radical
change in statistical behavior to the transition from sta-
tionarity to nonstationarity. In the meantime, we will
have a closer look at various parameter dependencies and
reinterpret the lattice size effects we just evaluated in
terms applicable to data analysis.

C. Boundedness and “residual” multifractality

For simplicity, we consider the two-parameter bound-
ed cascade model described in Egs. (10)-(12) and illus-
trated in Fig. 2. Figure 3(a) illustrates the dependence of
generalized dimension D,}"’ on n, the number of cascade
levels. As predicted in (23), D{" tends to 1 with increas-
ing n. If one fixes the number of cascade steps and varies
the parameter H [Fig. 3(b)], the singularity of the bound-
ed cascade model naturally increases as H decreases. The
limit case H =0 represents a singular multifractal [the in-
tegral in (24) diverges] and differs considerably from finite
H [e.g., 0.15 on Fig. 3(b)]. The closer p to 0.5 the
smoother the field is and the smaller the difference be-
tween D" and 1 [Fig. 3(0)].

For truly intermittent multifractal process with H =0
the singularities are not smoothed with the increase of n.
As a result, the generalized dimensions D, of the singular
model do not depend on n, at least in microcanonical sit-
uations such as ours. In essence, by “turning on” the
smoothing parameter H we have gone from a stochasti-
cally discontinuous model to a stochastically continuous
one. However, there always remains at finite resolution a
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FIG. 3. Generalized dimensions D, of the bounded cascade
model: dependence on the parameters H, p, and n. (a) H =%,
p=0.35, n =9, 15, and 21 (notice the convergence to unity); (b)
p=0.35,n=15;27%=0.7, 0.8, 0.9 (“residual” multifractalities)
and 1.0 (unbounded log-binomial truly multifractal model); (c)
H =%, n=15; p=0.30, 0.35, 0.40 (increasing smoothness and
accelerating the convergence to unity).

“residual” or “spurious” multifractality. In data-analysis
applications, such residual multiscaling cannot be dis-
tinguished from bona fide multifractality associated with
a sufficiently narrow singularity spectrum without im-
proving the instrumental resolution (which is like increas-
ing n).

IV. STRUCTURE FUNCTIONS

A. Brief description

Following as closely as possible the development in
Sec. IIT A on singular measures, we return to (14) and
slightly but importantly revise the definition of our gener-
ic stochastic process allowing @(x) to take a priori any
real value. Instead of I B’(x), we now take its antigradient

(denoted —d, =—09/0x) as a scale-selective weighting
function for the convolution operation in (15):

—axIB’(x)=5(x —r/2)—68(x+r/2), O<r=L .

This allows us to define the relative “increment” of ¢(x),
over a distance r around x,
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Atp(r;x)=<poaxlB’(x)
=@x +r/2)—@(x —r/2),
r/2<x=L-r/2. (27

In analogy with (16), we define the normalized random
absolute increment

__ lAersx)|

=g 2 -0 28
If the process @(x) has stationary increments, the statisti-
cal properties of d,(x) will not depend on x, e.g,
(d,(x)7)=(df) which are known as “structure func-
tions.”

For scaling processes, we readily anticipate
&(q)

, O0<r<\L (29)

r

(df)~

for g such that {|A@(r)|?) < w; this implies in particular,
g > —1, unless vanishing increments are unusually rare
(more on this limitation in Ref. [29]). In (29) L is viewed
as the upper bound of the nonstationary scaling regime:
r* for the models described in (12) and (13), the integral
scale more generally speaking. Like singular measures,
structure functions are non-negative and conditioned by
scale so many analogies can be drawn between the two
approaches. There are, however, important differences as
well. For instance, the normalized variables d,(x) are in-
sensitive not only to multiplication of ¢(x) by a constant,
as for the p,(x), but also to the addition of a constant.
Exploiting this invariance and increment stationarity, one
can substitute {|A@(r)|?)={|A@(r;x)|?) for {(df) in
(29) without loss of generality and will do so in the fol-
lowing. A wavelet-based family of analyzing functions
that generalize I (x) and —9,Ip (x) leading to further

invariance properties is described in Ref. [29].

At the very least we know that, like 7(g), {(g) must be
concave. One can also show that {(g) is nondecreasing,
at least for bounded models based on cascade processes
or not (details in Appendix A). As a counterpart to the
exponent hierarchy D, in (18), we will use

H,=52 (30)
q

which is necessarily decreasing for any concave &(q),
given that £(0)=0 by definition. The scaling version of
the Wiener-Khintchine relation applicable to processes
with stationary increments [32] tells us that the spectral
exponent is related to the case g =2,

B=2H,+121. (31

Another special case which has attracted much attention
is ¢ =1 since it can be related to the fractal dimension of
the graph g(@) of @(x), viewed as an object in two-
dimensional space [34]:

Dy ,=2—H,<2 (32)

where H,={(1) is the Holder or “roughness” exponent
in (29). This, incidentally, puts bounds on H,, the codi-

mension of g(g). The smallest possible D, is 1, at-
tained for differentiable functions at H,=1. Of course
the upper bound on D, is 2 (the graph fills a two-
dimensional space) and is attained for H, =0, the corre-
sponding (g =1) structure function is not only scale in-
variant but scale independent. This occurs for the sta-
tionary scaling processes, including all singular multifrac-
tal cascades. Finally, it is noteworthy that H, ={(1)>0
in (29) is equivalent to a statement of stochastic continui-
ty, i.e., increments over small distances are (almost surely
everywhere) small.

In Sec. III A, we had two predetermined exponents,
7(0)=—1 and 7(1)=0, and we retained C,=1—D,
=1—7'(1) in (19) as the single most important exponent
in the whole approach based on singular measures. To
first order, C, quantifies intermittency or sparseness
viewed as a special kind of variability. Of course all the
other exponents are necessary to qualify the intermitten-
cy hence the multifractality (in the sense of singular mea-
sures). For structure functions the situation is somewhat
different. We have only one predetermined case, §(0)=0,
so if we can retain one single exponent from this ap-
proach, it will only account for the linear part of {(q).
For simplicity, we will take the graph codimension
H,={(1) in (32) not only as a direct measure of “smooth-
ness” in the process but as a measure of the deviation
from stationary behavior, a quantifier of nonstationarity
in the observed variability [35]. All the other {(gq) ex-
ponents will of course be necessary to qualify the nonsta-
tionarity or multiaffinity (multifractality in the sense of
structure functions).

B. Self-affinity and multiaffinity

If the increments are narrowly distributed, then we will
have (|A@(r)|?) = (|A@(r)|)?, and this immediately im-
plies {(g)=¢{(1)=gH, equivalently, H, =H, a constant
not unrelated to the smoothing parameter in the bounded
cascades (12), as we will soon see. For reasons given
above in connection with D, we necessarily have
O0<H <1 and these models also have B=2H +1 for
g =2. In this case, we are dealing with so-called self-
affine processes which are characterized by simple (single
exponent) but nontrivial statistical behavior from the
viewpoint of structure functions. At any rate, this is the
only case where one can justifiably say that

(JA@(Ar)|9) = A ([A@(r)|7), A>0 . (33)

The most standard definition of statistical self-affinity, a
geometrical (graph-related) property, is retrieved at g =1
and need not be extended to g1 where there is no im-
mediate geometrical interpretation of (33). We will refer
to processes obeying (33) as monoscaling or, better still,
“monoaffine” (see below).

The most famous self-affine random process is no
doubt the standard Brownian motion (uncorrelated
neighboring steps) the scaling of which is contained en-
tirely the classical result {|A@(r)|?) ~r from which f=2
follows directly and D, =3 from the associated
H =1/2 monoscaling. For H#1/2 (monoscaling) we ob-
tain Mandelbrot’s generalizations of Brownian motion
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[23], known as fractional Brownian motions (FBM’s).
For 0<H <1 (1<B<2) we have negative correlations
between neighboring steps, up to 50% anticorrelation in
the stationary limit H—0, and for L <H <1 (2<f<3)
positive correlations, up to 100% correlation in the al-
most everywhere differentiable limit H — 1.

It is clear that Eq. (33) is unnecessarily restrictive if
taken as a definition of statistical self-affinity. In contrast
with (33), one can combine Egs. (27)-(30) into

(|A@(Ar)|7) =A% (|A@(r)]9), A20. (34)

Random functions with nonconstant H,’s [non-linear
£(q)s] have been recently described as “multiaffine”
[26,27]. This leaves the more general concept of mul-
tifractality to encompass multiscaling in both functions
(H,’s) and measures (D,’s).

Indeed (29), or (34), is the basis of Parisi and Frisch’s
[3] original description of a multifractal, namely as func-
tions having nontrivial combinations of many different lo-
cal Holderian-type singularities [i.e., values of A (x) in
|Ag(r;x)| ~r**)], each living on a different sub-set
{x €[0,L],|Ap(r;x)| ~r"} with a different fractal dimen-
sion D (h). By showing that D (h) is the Legendre trans-
form of {(g)+1, the authors gave Egs. (29) and (34) ex-
plicitly multifractal significance, however they did not de-
scribe any specific way of constructing such a multifrac-
tal. Stationary multifractals (i.e., standard multiplicative
cascades) have been proposed in many different guises
[10-13] but, to the extent of our knowledge, they had
only monoscaling nonstationary counterparts (i.e.,
FBM’s) until quite recently [11,25-29, 40]. As we will
now show, bounded cascade models [24] constitute
another class of nonstationary multiaffine stochastic pro-
cesses.

C. Application to bounded models

Using real-space renormalization, we show in Appen-
dix C that Egs. (30) and (34) lead to

gH, 0<g¢<1/H
§9=11, 1/H<q< (352)
for the bounded cascade models described in (12). A
heuristic argument for large g goes as follows: bounded-
ness implies the existence of a maximum increment
|A@|max on all scales and it will eventually dominate the
higher-order moments; for sufficiently large g, our estima-
tor of (|A@(r)|?) is |A@|2, . /A <r since A=1/r, hence
E(g>1)=1.

We plotted in Fig. 4 the scaling exponents {(g) for
different values of H, equal to 0, 1, 1, 1, and 1. The ex-
ponents were calculated numerically using a modified
Higuchi algorithm [36] and the numerical results closely
follow their theoretical counterparts in (35a). The dotted
lines in Fig. 4 illustrate the behavior of {(q) for H equal
to ; (FBM), 1 (standard Brownian motion) and 1 (the
limit case of differentiable functions). The limit case
H =0 is quite interesting; the numerics show a “residual”’
shift from £(g)=0 in the sense of Sec. IIIC but for
multiaffinity since it is traceable to the finite number of

cascade steps used (n =15 here).
Equivalently to (35a), we have

H,=min{H,1/q}, 05¢=<c . (35b)

Three remarkable moments—¢g =1, 2, and 1/H—
deserve more detailed consideration.
g=1. From (32) and (35b), we find

Dy, =2—H,;=max{2—H,1} . (36)

For H 21 bounded cascade models become statistically
(and visually) indistinguishable from piecewise constant
functions, i.e., “simple” curves with dimension 1. Figure
5 provides an example with H =1.7; only a few jumps
generated by the first few cascade steps are visible. In the
opposite limiting case of unbounded log-binomial cascade
models (H =0), the resulting field is intermittent and sta-
tionary and its graph dimension is 2. In short, nonsta-
tionary bounded models are stochastically continuous
(H,>0), unbounded but stationary ones are not
(H,=0).

g =2. Second-order moments are associated with ener-
gy spectra. From (31) and (35b), we find

B=2H,+1=min{2H,1}+1, H>0, (37a)

which is > 1. The special case H =1 yields =1, corre-
sponding to Kolmogorov’s [16] scaling law for fully
developed turbulence. In its singular (H =0) incarna-
tion, the model is stationary so (31) hence (37a) no longer
apply; the spectral exponent S is then fully defined by p

B=D,=—log,[1—2p(1—p)], H=0, (37b)

which is <1. Both theoretical spectral exponents (37a)
and (37b) are presented in Fig. 6. We notice that the
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FIG. 4. Structure functions exponents £(g) of bounded and
unbounded cascade models having H=0, 1, 1, 1, and 1.
Straight lines for FBM (H= %), standard Brownian motion
(H= %), and differentiable functions (H =1) are added for com-
parison. The fluctuations in the data points are caused by the
change of realization for every value of g and provide a useful
indication of the deviation from ergodicity in our model. No-
tice also the systematic positive deviation of the unbounded
H =0 case from {(q)=0 as well as the “smoothing” of the tran-
sition at ¢ =1/H, these are both effects of the finite resolution
(n=15).
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FIG. 5. Example of a bounded cascade model with extreme
smoothness. The parameters are H=1.7, p=0.35 (for n =12)
and lead to H;=1, hence D,=1 (almost everywhere
differentiability); H,=1/2, hence =2 (a few discontinuities
remain from the first cascade steps); and bounds ¢_=0.871 " - -
and ¢, =1.13---.

singular limit of the bounded model (H —0) and the
weak variability limit of the unbounded model (p —1)
agree (f—1F) and, for all practical purposes, “flicker
noise” (8=1) lies at the boundary between scaling pro-
cesses that are stationary (8 < 1) and those that have sta-
tionary increments (1 << 3). [Going from (37b) to (37a)
was in fact the original motivation for the bounded model
(24].]

g =gq.. This is the moment of highest order where the
&(q)’s of bounded models with smoothing exponent H
coincide with those of FBM’s having an identical param-
eter; namely,

q.=1/H .

Indeed, for g > gq., we have {(1)=1 for the bounded mod-
el (35a) and §(g)=gH for FBM in (33). In other words,
bounded models and FBM’s are indistinguishable by
structure functions alone for all moments g <g.. It is
noteworthy that for H =1 (8=1) the critical moment g,
equals 3. In the framework of multifractals and singular-
ity analysis, the thermodynamical formalism [37] allows
us to interpret a discontinuity in the derivative of any ex-
ponent function like {(g) as a (first-order) phase transi-
tion. In the present model, this qualitative change in sta-

z.sfs P
p=2

B=2H+1
B=-log,[p*+(1-p)’]

0.5
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0 (H=0) 050 1 1
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FIG. 6. Spectral exponents of bounded and unbounded cas-
cade models. Notice the different parameters being varied hor-
izontally. On the left-hand side (0 <B <1, stationarity prevails
and H=0), p varies from 0 to ;— On the right-hand side
(1 <B<2, stationary increments prevail and p is irrelevant), H
varies from O to 1.5; no change in p occurs beyond H =1.

tistical behavior for large g is traceable to the bounded-
ness and related large scale stationarity, both of which
are absent in FBM. This remarkable feature of the
bounded model will be discussed in more detail elsewhere
and contrasted with other interesting cases of multifrac-
tal phase transitions for structure functions [25,30,38].

V. DISCUSSION AND GEOPHYSICAL APPLICATIONS

We can visualize many of our findings with the help of
Fig. 7 where we represent the position of our {p,H;n |-
models in the “mean multifractal plane.” In this repre-
sentation the axes are both codimensions so we can
directly compare arbitrary scalar fields ¢(x) with x ER?
for any dimension D. Vertically, we use the information
codimension C; =D —D ;=D —7'(1)—a direct measure
of intermittency —and horizontally, the graph codimen-
sion H,=(D +1)—D,={(1)—a direct measure of non-
stationarity. In Refs. [15,35] we promote this simple de-
vice as a means to classify, compare, relate, etc., geophys-
ical data and/or stochastic models. In this application,
however, one should use the process itself to find H, and,
due to nonstationarity, a related stationary measure (such
as the absolute small-scale gradient field) is used to find
C,. Here we more simply use the bounded cascade to
determine both coordinates, with one exception discussed
in Table 1.

All  four corners of the natural domain
(H,,C,)E[0,1)* for D =1 are occupied by well-known
cases, each of which can in turn be mapped to selected
values of p and H (at n = o) for our model (cf. Table I).
For finite n, we find the model to navigate very near the
axes: vertically if H =0 (variable p), and horizontally if
H >0 (any p). The distance from the axes decreases with
increasing n so we are simply dealing with finite-size
effects, “residual” intermittency or smoothness exponents
(see inset in Fig. 7). Using the above described rules—C,
relates to absolute gradients—we find the interior of the
domain occupied by various geophysical datasets, such as
cloud liquid water density [21], and other multiaffine
models, such as fractionally integrated cascades [11,35].

It is of interest to note that both bounded [24] and
fractionally integrated [11] cascades were largely
motivated in the first place by cloud radiation problems.
In the meteorlogical community, there is an urgent need
for simple but realistic stochastic models for internal
cloud structure. Cloud variability—the atmosphere’s
fluctuating liquid water and/or ice density field —is wide-
ly recognized as having a first-order effect in the Earth’s
radiation budget, hence on climate modulation. Uncer-
tainties in cloud radiative properties are therefore one of
the major sources of error in climate forecasting efforts.
The bounded cascade model is applied directly to the
cloud radiation problem in Ref. [39], using the parameter
H only to fit the observed wave-number spectrum of the
fluctuations of vertically integrated liquid water
[B=£(2)+1=3] and the parameter p is then used to ap-
proximate the observed one-point histogram, thus largely
complementing this study.

Without eliminating the possibility of the existence of a
natural signal with a complete {(g) spectrum that can be
matched by that of the bounded model, it is too simple to
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be realistic and accordingly it has been exploited as a
pedagogical tool, well suited for finding and exploring the
boundary between stationarity and nonstationarity within
the vast functional space defined by statistical scale in-
variance. It is hoped that, in turn, this knowledge can be
of help in classifying natural phenomena and provide gui-
dance for their statistical analysis.

V1. SUMMARY AND CONCLUSIONS

We have explored the statistical properties of cascade
models (9) and (10) with multiplicative factors that ap-
proach unity as the cascade proceeds. In this case, the

small-scale limit leads to fields that are bounded above

and below. Special attention was given to model (12)
which calls for an algebraic decay with respect to scale.
Specifically the process ¢(x) is defined on the interval
[0,1] which is repeatedly divided in two, applying factors
or “weights” W=1+(1—-2p)rf_, 0<p<1 0<H< )
at cascade step n where r, =27 ". Roughly speaking, the
first few cascade steps—where the W’s are still quite
different from one—Ileave the field looking like a piece-
wise constant function, generally with rather large
discontinuities; the following steps then modulate this
field, basically in a weak additive manner. In essence, the
large-scale features are multiplicative and stationary
while their small-scale counterparts are additive and non-
stationary (with stationary increments however).

Due to its boundedness, a standard singularity analysis

of new model yields trivial results (D, =1 for n= ).
For finite n, however, nontrivial estimates of the D,’s are
derived analytically [Eq. (20a), Fig. 3] and related to “re-
sidual” multifractality (i.e., one that is entirely traceable
to finite-size effects). Nevertheless, the model has in-
teresting multiscaling structure functions: £(q) in

r;(q) ,

%
r<<2™" | p*= , g>—1

(|A¢(r)|?) ~

ST P

const , rZZ_”‘, n*=—, ¢g>—1,
is not linear in g. More precisely, we find [Appendix C,
Eq. (35a), Fig. 4],

{(¢)—>min{gH,1} , n—ow ,

whereas fractional Brownian motion (FBM) yields
§(g)=gH. In particular, the energy spectrum scales with
an exponent 8=§(2)+1> 1 whereas standard (unbound-
ed) cascade models have B8 < 1 (Fig. 6); however, this spec-
tral exponent is not automatically related to the “rough-
ness” exponent H;={(1) as in FBM’s. The model is
(asymptotically) multiaffine in a recently introduced
nomenclature [26,27] where the FBM’s are monoaffine
and the concept of self-affinity only reflects on the fractal
geometry of the graph at g=1, its dimension being
2—H, [23,34].

The singular limit of the model (H =0) is equivalent to
the p model [13] and then has trivial structure functions

TABLE 1. Standard cases found in the four corners of the accessible “g =1 or “mean” multifractal

domain, (H,,C,)€E€[0,1] for processes developing in

D=1. Concerning Heaviside step functions, we

use the function itself to obtain H, and its absolute gradient to obtain C|; this is the recommended pro-
cedure when dealing with nonstationary geophysical data [15,35] and does not change the C, for the

three first cases listed below.

C, H, Description p H
0 0 weakly variable scaling stationary noises z% 0
0 1 nonconstant almost everywhere differentiable functions <3 >1
1 0 Dirac § functions 0 0
1 1 Heaviside step functions <3 0
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[£(q)=0] due to the fully restored stationarity (n*= o0);
numerically however (n < «), small {(q) values are found
but they are residual. This shows that statistical analysis
by singular measures on the one hand and by structure
functions on the other largely complement rather than
compete with each other. This is especially true when
one leaves the realm of nonstationary stochastic models
for that of nonstationary geophysical data analysis
[15,21,35] where one must be particularly careful about
finite-size effects.

In conclusion, we have analyzed a simple multiaffine
stochastic model that is general enough to illustrate the
key differences between scaling processes that are station-
ary and multiplicative, vs nonstationary and additive.
Most importantly, the model allows the transition be-
tween these radically different stochastic “‘states” to be
explored; in particular, the discontinuity in {'(g) at
g.=1/H (a first-order multifractal phase transition) is
directly related to the mixture of stationary and nonsta-
tionary ingredients in the present model. There is no
doubt that such models will be helpful in understanding
nonlinear phenomena in natural, computational and labo-
ratory settings, a prime example (covering all three) being
fully developed turbulence.
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APPENDIX A: A STATISTICAL CONSEQUENCE
OF BOUNDEDNESS AND SCALE INVARIANCE

The concave function 7(g) has been well studied: it has
been shown [8,11,33] that the r-conditioned moments
(p}) are divergent for all orders q > qp >qm, where the
critical moment g, is the solution of 7(g)=0 (other than
g =1) and ¢, is the solution of 7'(¢)=0 (a maximum).
So, if all moments are bounded (g, = ), then concavity
requires 7(q) to be a constant between g,, < and o.
For bounded models we can show that the same is true
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then
£'(g)=0 (A2)
where £(q) is defined in Eq. (29).
Indeed, let ¢’ > g, then
(1A@(M]9)y=(|A@(r|9A@(r)|79)
<max, |Ap(r,x)|7 "9 |A@(r)]7) .
It follows from this that
, q &g
max, |Ag(r,x)[? 79> {Agnl™) _ (r/L) =
(lA@(r]9)  (r/L)%9
=(r/L)*9) %9 (A3)
If one assumes that §(g')—&(g) <O then
(r/L)9 89 _, 6  r 0

since r <<L and, according to (A3), moment of order
q’'—q >0 is unbounded for small scales. This however
contradicts (A1). Hence {(q')—{(g) =0, i.e., the function
£(q) is nondecreasing (A2).

Within the framework of incompressible turbulent
flows, Frisch [41] explains the observed [42] nondecreas-
ing £(q) for turbulent velocity structure functions using
similar arguments; he furthermore justifies the bounds on
velocity physically, invoking the speed of sound.

APPENDIX B: SINGULAR MEASURES
OF BOUNDED CASCADE MODELS (9)

We derive here the generalized dimensions D;"’ for all
bounded cascade models (9).

First take L =1 and according to Egs. (5)—(7) we have
(2¢,(1;1))=3¢,(1;1)=1/r,=A,=2". Hence,

1=

W=I

To simplify the below analysis we first show that

A

n

In Y

m =1

9 n

=3 1In

i=1

[(14+£,)9+(1—£,)9] . (B1)

10+
=1

i

for £(q), namely that it is nondecreasing on [0, ). L . )
: Indeed, taking into account the microcanonical conserva-
More, generally, if X . .
tion of bounded model (9)-(10), the following chain of
(|A@p(r)|?) <o , r—0 (A1) equalities proves Eq. (B1),
An n q An*—l n 9 An*l n 9
n > | [IALf) | =lni(1+f)7 3 [H(lif,-) +(=fr7 > [I1 axf) J
m=1 i=1 m=1 i=2 m=1 |i=2
An~2 [ n 9q A,,—z n q
=ln ([A+f)0+HA=F 1A+, 3 ([T Axf) | =, 3 | T (1xf) H
m=1 [i=3 m=1 [i=3

=S I[(1+/)9+(1— )] .

i=1

Then the sum of the gth power of p, gives us

: =ln{[(1+f1)q+(1—f1)q

WA+ £+ 01—£,)] -

A+ £E A= f)0)
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|

=rg*tlexp 3 In[(1+£)0+(1—£,)9)=r *1 [T (141940 £,)7]

i=1 i=1

q
=r,exp

n 1Lf; 9

="

i=1

T (1£/,)

i=1

An
(p=r, 3

m=1

An
In [r,‘{ >

m=1

where r, =27 ". Since (17b) and (18), one gets
n
(g=1D{"=q—~ 3 log(1+£)+(1—£,7]
i=1

which is equivalent to Eq. (20a).

APPENDIX C: STRUCTURE FUNCTIONS OF BOUNDED CASCADE MODELS (12)

We present a real-space renormalization argument for our result in Eq. (35a). In the following, we use for conveni-
ence the original notations of Refs. [24,39]: c=2"H, £, =(1—2p)2~.

1. First-order structure function

Theorem. If in the cascade model [Egs. (9) and (10)] we take f; =foc’, fo >0, 0<c <1, then the exponent £(1) defined
as

(|AGAR)] ) ~ASV(|A(r)]) (C1)
is
—logye , +3c¢=1

ED=1, gec< (C2)

1

2

forall A=2/, j=1,...,n >>1, where n is the number of cascade steps. .
Proof. The absolute value of the smallest scale (» =1) differences for the nth cascade level of a bounded model can be

written as

(lag(n|)= 2 w,ﬁ'“zz_ (A;) (C3)

i=1 j=1

)

where the weights w ™ correspond to the probability of the absolute value of all possible differences. Since there are

n .
3> 27 I=2"—1
i=1

weights, all together they should be normalized as

n 271 n
S S wr=3 2" lwM=1. (C4)
i=1j=1 i=1
One can prove by induction that
oy 2nH172
w; :—2"——1—— (1=1,...,n) (C5)

which satisfies Eq. (C4).
The differences A,-j have common “parents,”

n—i
P=1I 1£f, G=1,...,n)
I=1
and the index j (j =1, ...,2°"!) denotes the number of all possible differences. Namely,
Ap=2P\fy ; 8y =2P,(1Lf,)f 15 Byp=2P,(f, 1 £S5
A3, =2P3f, (1Ef, _DALS,); An=2P;(f, £ ,)1Ef, )3 (C6)
Ayy=2Py(fy 2t fr - ))AES,) 5 Bsyg=2P3(f 2 f 1 EfuEfn—afn—1fa) ; ete.

We notice that there is a correlation between signs + in (C6). However, it becomes negligible in the case of large
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enough n and all derivations below are valid for n >>1 only.
After averaging (C6) and substituting f; = f,c' into Eq. (C3) with w,™ defined by Eq. (C5), we get

n A 20t 2 2¢c | (2e)"—
A — (n) 2 n 1+121 1 ( (7
(| ¢(r)i> ,'21 wl [ fOc ] f ”‘1 ;§] 2"_1 | 2C _1 )
for ¢#0.5.
Let A=2in Eq. (C1). It is not difficult to see that
2f =1
(1ad(2r) ))—2 w" Y 2 (a;)
i=2 j=1
and by analogy with (C7), one obtains
2 2)" -1
(1882 =fo5" (20,,)*_1 , el (C8)
Dividing (C7) by (C8) we get
(JAg(r)]> _2"7'—1 | (20)"—1
= , CFL . (C9
(lag2n])  27—1 | (2¢)" =1 7 2
Using the rule of I"'Hospital we can easily find from Eq. (C9a) that
(Jagn) _2"7'—1 | n
(lag2r))) 27— n—1 (C9b)

for ¢=0.5. Notice that Eq. (C9a) is not equal to 1 for ¢ =1 and all n because of the above-mentioned correlation.
Moreover, one can prove that for ¢ =1 the ratio (|Ad(r)|)/{A¢(2r)|) is always less than 1 and converges to 1 if
n—> 0.

It follows from Eqgs. (C9a) and (C9b) that

c, 0.5%¢c=<1, n—ow
(|A¢(r)]) S ¢ o
{lap(2r)]) 35, 0<c=0.5, n—w .

Taking (base 2) logarithms of both sides of (C10) yields Eq. (C2) for A=2. The theorem follows automatically for oth-
er values of A=2/(j=2,...,n—1) since

C1Ag(An] Y = (A3 ) ~250(| a2 1)) ~ 250 |ag(2 )]y~ - -
~ 28 [AG(M ) =25V (| Ad(r)])

2. Structure functions for g+ 1

In this subsection we generalize (nonrigorously) the theorem from the last section. Namely, to a first approximation
(at least for n >> 1), the exponents £(q) can be expressed as

q(—logyc), 0=qg=—1/logyc
=11 —1/logye<qg<w .

(C11)
Indeed,
n+l n . q q\n _
(s =5 wn’s (ag )~ fo 2N T 3 (2e0 =1 2c7_ | 2V }
i=1 j=1 _l i=1 2’*1 2Cq_1
for 2c%#1. The differences (|A¢(2r)|?) are derived analogously. Then, one gets
n—1__ qyn __
(agnl®) 2 L QD=1 | -1 (C12)
(|Ad(2r)]9) 2"—1 | (2c)" 7 1—1

which converges to ¢? for ¢ < —1/log,c. If ¢ > —1/log,c (i.e., 2c9 < 1), the bracketed ratio in Eq. (C12) tends to 1 and
(C12) itself converges to 5, which immediately gives us (C11) and completes the renormalization-group argument for
(35a) in the main body of the paper.
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